Python中常用的数据分析工具有哪些?

发布时间:2021-10-28 15:57:07 人气:305 作者:admin

Python中常用的数据分析工具有哪些?

  Python本身的数据分析功能不强,需要安装一些第三方扩展库来增强能力。我们课程中用到的库包括NumPy、Pandas、Matplotlib、Seaborn、NLTK等,接下来我们简单介绍一下相关的库,方便后面章节的学习。

  在Python中,常用的数据分析库主要有以下几种:

  1、NumPy库

  NumPy是Python开源的数值计算扩展工具,它提供了Python对多维数组的支持,能够支持高级的维度数组与矩阵运算。此外,针对数组运算也提供了大量的数学函数库。NumPy是大部分Python科学计算的基础,它具有以下功能:

  (1)快速高效的多维数据对象ndarray。

  (2)高性能科学计算和数据分析的基础包。

  (3)多维数组(矩阵)具有矢量运算能力,快速、节省空间。

  (4)矩阵运算。无需循环,可完成类似Matlab中的矢量运算。

  (5)线性代数、随机数生成以及傅里叶变换功能。

Python中常用的数据分析工具有哪些?

  2、Pandas库

  Pandas是一个基于NumPy的数据分析包,它是为了解决数据分析任务而创建的。Pandas中纳入了大量库和标准的数据模型,提供了高效地操作大型数据集所需要的函数和方法,使用户能快速便捷地处理数据。

  Pandas作为强大而高效的数据分析环境中的重要因素之一,具有以下特点:

  (1)一个快速高效的DataFrame对象,具有默认和自定义的索引。

  (2)用于在内存数据结构和不同文件格式中读取和写入数据,比如CSV和文本文件、Excel文件及SQL数据库。

  (3)智能数据对齐和缺失数据的集成处理。

  (4)基于标签的切片、花式索引和大数据集的子集。

  (5)可以删除或插入来自数据结构的列。

  (6)按数据分组进行聚合和转换。

  (7)高性能的数据合并和连接。

  (8)时间序列功能。

  Python与Pandas在各种学术和商业领域中都有应用,包括金融、神经科学、经济学、统计学、广告、网络分析等。

  3、Matplotlib库

  Matplotlib是一个用在Python中绘制数组的2D图形库,虽然它起源于模仿MATLAB图形命令,但它独立于MATLAB,可以通过Pythonic和面向对象的方式使用,是Python中最出色的绘图库。

  Matplotlib主要用纯Python语言进行编写,但它大量使用NumPy和其他扩展代码,即使对大型数组也能提供良好的性能。

  4、Seaborn库

  Seaborn是Python中基于Matplotlib的数据可视化工具,它提供了很多高层封装的函数,帮助数据分析人员快速绘制美观的数据图形,从而避免了许多额外的参数配置问题。

  注意:上面介绍的这些库都已经在安装Anaconda时进行了下载,后期可以直接使用import导入使用。

  5、NLTK库

  NLTK被称为“使用Python进行教学和计算语言学工作的绝佳工具”,以及“用自然语言进行游戏的神奇图书馆”。

  NLTK是一个领先的平台,用于构建使用人类语言数据的Python程序,它为超过50个语料库和词汇资源(如WordNet)提供了易于使用的接口,还提供了一套文本处理库,用于分类、标记化、词干化、解析和语义推理、NLP库的包装器和一个活跃的讨论论坛。

  以上内容为大家介绍了Python中常用的数据分析工具,希望对大家有所帮助,如果想要了解更多Python相关知识,请关注多测师。https://www.e70w.com/


返回列表
在线客服
联系方式

热线电话

17727591462

上班时间

周一到周五

二维码
线