7个提升Python程序性能的好习惯

发布时间:2021-11-19 10:10:46 人气:221 作者:多测师

7个提升Python程序性能的好习惯

  掌握一些技巧,可尽量提高Python程序性能,也可以避免不必要的资源浪费。

  1、使用局部变量

  尽量使用局部变量代替全局变量:便于维护,提高性能并节省内存。

  使用局部变量替换模块名字空间中的变量,例如 ls = os.linesep。一方面可以提高程序性能,局部变量查找速度更快;另一方面可用简短标识符替代冗长的模块变量,提高可读性。

  2、减少函数调用次数

  对象类型判断时,采用isinstance()最优,采用对象类型身份(id())次之,采用对象值(type())比较最次。

  #判断变量num是否为整数类型

  type(num) == type(0)

  #调用三次函数

  type(num) is type(0)

  #身份比较

  isinstance(num,(int))

  #调用一次函数

  不要在重复操作的内容作为参数放到循环条件中,避免重复运算。

  #每次循环都需要重新执行len(a)

  while i < len(a):

  statement

  #len(a)仅执行一次

  m = len(a)

  while i < m:

  statement

  如需使用模块X中的某个函数或对象Y,应直接使用from X import Y,而不是import X; X.Y。这样在使用Y时,可以减少一次查询(解释器不必首先查找到X模块,然后在X模块的字典中查找Y)。

7个提升Python程序性能的好习惯

  3、采用映射替代条件查找

  映射(比如dict等)的搜索速度远快于条件语句(如if等)。Python中也没有select-case语句。

  #if查找

  if a == 1:

  b = 10

  elif a == 2:

  b = 20

  ...

  #dict查找,性能更优

  d = {1:10,2:20,...}

  b = d[a]

  4、直接迭代序列元素

  对序列(str、list、tuple等),直接迭代序列元素,比迭代元素的索引速度要更快。

  a = [1,2,3]

  #迭代元素

  for item in a:

  print(item)

  #迭代索引

  for i in range(len(a)):

  print(a[i])

  5、采用生成器表达式替代列表解析

  列表解析(list comprehension),会产生整个列表,对大量数据的迭代会产生负面效应。

  而生成器表达式则不会,其不会真正创建列表,而是返回一个生成器,在需要时产生一个值(延迟计算),对内存更加友好。

  #计算文件f的非空字符个数

  #生成器表达式

  l = sum([len(word) for line in f for word in line.split()])

  #列表解析

  l = sum(len(word)

  for line in f for word in line.split())

  6、先编译后调用

  使用eval()、exec()函数执行代码时,最好调用代码对象(提前通过compile()函数编译成字节码),而不是直接调用str,可以避免多次执行重复编译过程,提高程序性能。

  正则表达式模式匹配也类似,也最好先将正则表达式模式编译成regex对象(通过re.complie()函数),然后再执行比较和匹配。

  7、模块编程习惯

  模块中的最高级别Python语句(没有缩进的代码)会在模块导入(import)时执行(不论其是否真的必要执行)。因此,应尽量将模块所有的功能代码放到函数中,包括主程序相关的功能代码也可放到main()函数中,主程序本身调用main()函数。

  可以在模块的main()函数中书写测试代码。在主程序中,检测name的值,如果为'main'(表示模块是被直接执行),则调用main()函数,进行测试;如果为模块名字(表示模块是被调用),则不进行测试。

  以上内容为大家介绍了7个提升Python程序性能的好习惯,希望对大家有所帮助,如果想要了解更多Python相关知识,请关注多测师。https://www.e70w.com/


返回列表
在线客服
联系方式

热线电话

17727591462

上班时间

周一到周五

二维码
线