发布时间:2022-03-07 10:17:30 人气:870 作者:多测师
我们知道 Pandas 是 Python 中最广泛使用的数据分析和操作库。它提供了许多功能和方法,可以快速解决数据分析中数据处理问题。
为了更好的掌握 Python 函数的使用方法,我以客户流失数据集为例,分享在数据分析过程中最常使用的函数和方法。
数据如下所示:
import numpy as np
import pandas as pd
df = pd.read_csv("Churn_Modelling.csv")
print(df.shape)
df.columns
结果输出:
(10000, 14)
Index(['RowNumber', 'CustomerId', 'Surname', 'CreditScore', 'Geography','Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard','IsActiveMember', 'EstimatedSalary', 'Exited'],dtype='object')
1.删除列
df.drop(['RowNumber', 'CustomerId', 'Surname', 'CreditScore'], axis=1, inplace=True)
print(df[:2])
print(df.shape)
结果输出:
说明:「axis」 参数设置为 1 以放置列,0 设置为行。「inplace=True」 参数设置为 True 以保存更改。我们减了 4 列,因此列数从 14 个减少到 10 列。
Geography Gender Age Tenure Balance NumOfProducts HasCrCard \
0 France Female 42 2 0.0 1 1
IsActiveMember EstimatedSalary Exited
0 1 101348.88 1
(10000, 10)
2.选择特定列
我们从 csv 文件中读取部分列数据。可以使用 usecols 参数。
df_spec = pd.read_csv("Churn_Modelling.csv", usecols=['Gender', 'Age', 'Tenure', 'Balance'])
df_spec.head()
3.nrows
可以使用 nrows 参数,创建了一个包含 csv 文件前 5000 行的数据帧。还可以使用 skiprows 参数从文件末尾选择行。Skiprows=5000 表示我们将在读取 csv 文件时跳过前 5000 行。
df_partial = pd.read_csv("Churn_Modelling.csv", nrows=5000)
print(df_partial.shape)
4.样品
创建数据框后,我们可能需要一个小样本来测试数据。我们可以使用 n 或 frac 参数来确定样本大小。
df= pd.read_csv("Churn_Modelling.csv", usecols=['Gender', 'Age', 'Tenure', 'Balance'])
df_sample = df.sample(n=1000)
df_sample2 = df.sample(frac=0.1)
5.检查缺失值
isna 函数确定数据帧中缺失的值。通过将 isna 与 sum 函数一起使用,我们可以看到每列中缺失值的数量。
df.isna().sum()
6.使用 loc 和 iloc 添加缺失值
使用 loc 和 iloc 添加缺失值,两者区别如下:
·loc:选择带标签
· iloc:选择索引
我们首先创建 20 个随机索引进行选择:
missing_index = np.random.randint(10000, size=20)
我们将使用 loc 将某些值更改为 np.nan(缺失值)。
df.loc[missing_index, ['Balance','Geography']] = np.nan
"Balance"和"Geography"列中缺少 20 个值。让我们用 iloc 做另一个示例。
df.iloc[missing_index, -1] = np.nan
7.填充缺失值
fillna 函数用于填充缺失的值。它提供了许多选项。我们可以使用特定值、聚合函数(例如均值)或上一个或下一个值。
avg = df['Balance'].mean()
df['Balance'].fillna(value=avg, inplace=True)
fillna 函数的方法参数可用于根据列中的上一个或下一个值(例如方法="ffill")填充缺失值。它可以对顺序数据(例如时间序列)非常有用。
8.删除缺失值
处理缺失值的另一个方法是删除它们。以下代码将删除具有任何缺失值的行。
df.dropna(axis=0, how='any', inplace=True)
9.根据条件选择行
在某些情况下,我们需要适合某些条件的观测值(即行)。
france_churn = df[(df.Geography == 'France') & (df.Exited == 1)]
france_churn.Geography.value_counts()
10.用查询描述条件
查询函数提供了一种更灵活的传递条件的方法。我们可以用字符串来描述它们。
df2 = df.query('80000 < Balance < 100000')
df2 = df.query('80000 < Balance < 100000'
df2 = df.query('80000 < Balance < 100000')
11.用 isin 描述条件
条件可能有多个值。在这种情况下,最好使用 isin 方法,而不是单独编写值。
df[df['Tenure'].isin([4,6,9,10])][:3]
12.Groupby 函数
Pandas Groupby 函数是一个多功能且易于使用的功能,可帮助获取数据概述。它使浏览数据集和揭示变量之间的基本关系更加容易。
我们将做几个组比函数的示例。让我们从简单的开始。以下代码将基于 Geography、Gender 组合对行进行分组,然后给出每个组的平均流。
df[['Geography','Gender','Exited']].groupby(['Geography','Gender']).mean()
13.Groupby与聚合函数结合
agg 函数允许在组上应用多个聚合函数,函数的列表作为参数传递。
df[['Geography','Gender','Exited']].groupby(['Geography','Gender']).agg(['mean','count'])
以上内容为大家介绍了数据分析过程中最常使用的Python函数和方法,希望对大家有所帮助,如果想要了解更多Python相关知识,请关注多测师。https://www.e70w.com/xwzx/