Python多核编程mpi4py实践

发布时间:2022-03-29 09:51:36 人气:111 作者:多测师

  一、概述

  CPU从三十多年前的8086,到十年前的奔腾,再到当下的多核i7。一开始,以单核cpu的主频为目标,架构的改良和集成电路工艺的进步使得cpu的性能高速上升,单核cpu的主频从老爷车的MHz阶段一度接近4GHz高地。然而,也因为工艺和功耗等的限制,单核cpu遇到了人生的天花板,急需转换思维,以满足无止境的性能需求。多核cpu在此登上历史舞台。给你的老爷车多加两个引擎,让你有法拉利的感觉。现时代,连手机都到处叫嚣自己有4核8核处理器的时代,PC就更不用说了。

  扯远了,anyway,对于俺们程序员来说,如何利用如此强大的引擎完成我们的任务才是我们要考虑的。随着大规模数据处理、大规模问题和复杂系统求解需求的增加,以前的单核编程已经有心无力了。如果程序一跑就得几个小时,甚至一天,想想都无法原谅自己。那如何让自己更快的过度到高大上的多核并行编程中去呢?哈哈,广大人民的力量!

  目前工作中我所接触到的并行处理框架主要有MPI、OpenMP和MapReduce(Hadoop)三个(CUDA属于GPU并行编程,这里不提及)。MPI和Hadoop都可以在集群中运行,而OpenMP因为共享存储结构的关系,不能在集群上运行,只能单机。另外,MPI可以让数据保留在内存中,可以为节点间的通信和数据交互保存上下文,所以能执行迭代算法,而Hadoop却不具有这个特性。因此,需要迭代的机器学习算法大多使用MPI来实现。当然了,部分机器学习算法也是可以通过设计使用Hadoop来完成的。(浅见,如果错误,希望各位不吝指出,谢谢)。

  本文主要介绍Python环境下MPI编程的实践基础。

  二、MPI与mpi4py

  MPI是Message Passing Interface的简称,也就是消息传递。消息传递指的是并行执行的各个进程具有自己独立的堆栈和代码段,作为互不相关的多个程序独立执行,进程之间的信息交互完全通过显示地调用通信函数来完成。

  Mpi4py是构建在mpi之上的python库,使得python的数据结构可以在进程(或者多个cpu)之间进行传递。

  2.1、MPI的工作方式

  很简单,就是你启动了一组MPI进程,每个进程都是执行同样的代码!然后每个进程都有一个ID,也就是rank来标记我是谁。什么意思呢?假设一个CPU是你请的一个工人,共有10个工人。你有100块砖头要搬,然后很公平,让每个工人搬10块。这时候,你把任务写到一个任务卡里面,让10个工人都执行这个任务卡中的任务,也就是搬砖!这个任务卡中的“搬砖”就是你写的代码。然后10个CPU执行同一段代码。需要注意的是,代码里面的所有变量都是每个进程独有的,虽然名字相同。

  例如,一个脚本test.py,里面包含以下代码:

  from mpi4py import MPI

  print("hello world'')

  print("my rank is: %d" %MPI.rank)

  然后我们在命令行通过以下方式运行:

  #mpirun –np 5 python test.py

  -np5 指定启动5个mpi进程来执行后面的程序。相当于对脚本拷贝了5份,每个进程运行一份,互不干扰。在运行的时候代码里面唯一的不同,就是各自的rank也就是ID不一样。所以这个代码就会打印5个hello world和5个不同的rank值,从0到4.

  2.2、点对点通信

  点对点通信(Point-to-PointCommunication)的能力是信息传递系统最基本的要求。意思就是让两个进程直接可以传输数据,也就是一个发送数据,另一个接收数据。接口就两个,send和recv,来个例子:

  import mpi4py.MPI as MPI

  comm = MPI.COMM_WORLD

  comm_rank = comm.Get_rank()

  comm_size = comm.Get_size()

  # point to point communication

  data_send = [comm_rank]*5

  comm.send(data_send,dest=(comm_rank+1)%comm_size)

  data_recv =comm.recv(source=(comm_rank-1)%comm_size)

  print("my rank is %d, and Ireceived:" % comm_rank)

  print data_recv

  启动5个进程运行以上代码,结果如下:

  my rank is 0, and I received:

  [4, 4, 4, 4, 4]

  my rank is 1, and I received:

  [0, 0, 0, 0, 0]

  my rank is 2, and I received:

  [1, 1, 1, 1, 1]

  my rank is 3, and I received:

  [2, 2, 2, 2, 2]

  my rank is 4, and I received:

  [3, 3, 3, 3, 3]

  可以看到,每个进程都创建了一个数组,然后把它传递给下一个进程,最后的那个进程传递给第一个进程。comm_size就是mpi的进程个数,也就是-np指定的那个数。MPI.COMM_WORLD 表示进程所在的通信组。

  但这里面有个需要注意的问题,如果我们要发送的数据比较小的话,mpi会缓存我们的数据,也就是说执行到send这个代码的时候,会缓存被send的数据,然后继续执行后面的指令,而不会等待对方进程执行recv指令接收完这个数据。但是,如果要发送的数据很大,那么进程就是挂起等待,直到接收进程执行了recv指令接收了这个数据,进程才继续往下执行。所以上述的代码发送[rank]*5没啥问题,如果发送[rank]*500程序就会半死不活的样子了。因为所有的进程都会卡在发送这条指令,等待下一个进程发起接收的这个指令,但是进程是执行完发送的指令才能执行接收的指令,这就和死锁差不多了。所以一般,我们将其修改成以下的方式:

  import mpi4py.MPI as MPI

  comm = MPI.COMM_WORLD

  comm_rank = comm.Get_rank()

  comm_size = comm.Get_size()

  data_send = [comm_rank]*5

  if comm_rank == 0:

  comm.send(data_send, dest=(comm_rank+1)%comm_size)

  if comm_rank > 0:

  data_recv = comm.recv(source=(comm_rank-1)%comm_size)

  comm.send(data_send, dest=(comm_rank+1)%comm_size)

  if comm_rank == 0:

  data_recv = comm.recv(source=(comm_rank-1)%comm_size)

  print("my rank is %d, and Ireceived:" % comm_rank)

  print data_recv

  第一个进程一开始就发送数据,其他进程一开始都是在等待接收数据,这时候进程1接收了进程0的数据,然后发送进程1的数据,进程2接收了,再发送进程2的数据……知道最后进程0接收最后一个进程的数据,从而避免了上述问题。

  一个比较常用的方法是封一个组长,也就是一个主进程,一般是进程0作为主进程leader。主进程将数据发送给其他的进程,其他的进程处理数据,然后返回结果给进程0。换句话说,就是进程0来控制整个数据处理流程。

Python多核编程mpi4py实践

  2.3、群体通信

  点对点通信是A发送给B,一个人将自己的秘密告诉另一个人,群体通信(Collective Communications)像是拿个大喇叭,一次性告诉所有的人。前者是一对一,后者是一对多。但是,群体通信是以更有效的方式工作的。它的原则就一个:尽量把所有的进程在所有的时刻都使用上!我们在下面的bcast小节讲述。

  群体通信还是发送和接收两类,一个是一次性把数据发给所有人,另一个是一次性从所有人那里回收结果。

  1)广播bcast

  将一份数据发送给所有的进程。例如我有200份数据,有10个进程,那么每个进程都会得到这200份数据。

  import mpi4py.MPI as MPI

  comm = MPI.COMM_WORLD

  comm_rank = comm.Get_rank()

  comm_size = comm.Get_size()

  if comm_rank == 0:

  data = range(comm_size)

  data = comm.bcast(data if comm_rank == 0else None, root=0)

  print 'rank %d, got:' % (comm_rank)

  print data

  结果如下:

  rank 0, got:

  [0, 1, 2, 3, 4]

  rank 1, got:

  [0, 1, 2, 3, 4]

  rank 2, got:

  [0, 1, 2, 3, 4]

  rank 3, got:

  [0, 1, 2, 3, 4]

  rank 4, got:

  [0, 1, 2, 3, 4]

  Root进程自己建了一个列表,然后广播给所有的进程。这样所有的进程都拥有了这个列表。然后爱干嘛就干嘛了。

  对广播最直观的观点是某个特定进程将数据一一发送给每个进程。假设有n个进程,那么假设我们的数据在0进程,那么0进程就需要将数据发送给剩下的n-1个进程,这是非常低效的,复杂度是O(n)。那有没有高效的方式?一个最常用也是非常高效的手段是规约树广播:收到广播数据的所有进程都参与到数据广播的过程中。首先只有一个进程有数据,然后它把它发送给第一个进程,此时有两个进程有数据;然后这两个进程都参与到下一次的广播中,这时就会有4个进程有数据,……,以此类推,每次都会有2的次方个进程有数据。通过这种规约树的广播方法,广播的复杂度降为O(log n)。这就是上面说的群体通信的高效原则:充分利用所有的进程来实现数据的发送和接收。

  2)散播scatter

  将一份数据平分给所有的进程。例如我有200份数据,有10个进程,那么每个进程会分别得到20份数据。

  import mpi4py.MPI as MPI

  comm = MPI.COMM_WORLD

  comm_rank = comm.Get_rank()

  comm_size = comm.Get_size()

  if comm_rank == 0:

  data = range(comm_size)

  print data

  else:

  data = None

  local_data = comm.scatter(data, root=0)

  print 'rank %d, got:' % comm_rank

  print local_data

  结果如下:

  [0, 1, 2, 3, 4]

  rank 0, got:

  0

  rank 1, got:

  1

  rank 2, got:

  2

  rank 3, got:

  3

  rank 4, got:

  4

  这里root进程创建了一个list,然后将它散播给所有的进程,相当于对这个list做了划分,每个进程获得等分的数据,这里就是list的每一个数。(主要根据list的索引来划分,list索引为第i份的数据就发送给第i个进程)。如果是矩阵,那么就等分的划分行,每个进程获得相同的行数进行处理。

  需要注意的是,MPI的工作方式是每个进程都会执行所有的代码,所以每个进程都会执行scatter这个指令,但只有root执行它的时候,它才兼备发送者和接收者的身份(root也会得到属于自己的数据),对于其他进程来说,他们都只是接收者而已。

  3)收集gather

  那有发送,就有一起回收的函数。Gather是将所有进程的数据收集回来,合并成一个列表。下面联合scatter和gather组成一个完成的分发和收回过程:

  import mpi4py.MPI as MPI

  comm = MPI.COMM_WORLD

  comm_rank = comm.Get_rank()

  comm_size = comm.Get_size()

  if comm_rank == 0:

  data = range(comm_size)

  print data

  else:

  data = None

  local_data = comm.scatter(data, root=0)

  local_data = local_data * 2

  print 'rank %d, got and do:' % comm_rank

  print local_data

  combine_data = comm.gather(local_data,root=0)

  if comm_rank == 0:

  printcombine_data

  结果如下:

  [0, 1, 2, 3, 4]

  rank 0, got and do:

  0

  rank 1, got and do:

  2

  rank 2, got and do:

  4

  rank 4, got and do:

  8

  rank 3, got and do:

  6

  [0, 2, 4, 6, 8]

  Root进程将数据通过scatter等分发给所有的进程,等待所有的进程都处理完后(这里只是简单的乘以2),root进程再通过gather回收他们的结果,和分发的原则一样,组成一个list。Gather还有一个变体就是allgather,可以理解为它在gather的基础上将gather的结果再bcast了一次。啥意思?意思是root进程将所有进程的结果都回收统计完后,再把整个统计结果告诉大家。这样,不仅root可以访问combine_data,所有的进程都可以访问combine_data了。

  4)规约reduce

  规约是指不但将所有的数据收集回来,收集回来的过程中还进行了简单的计算,例如求和,求最大值等等。为什么要有这个呢?我们不是可以直接用gather全部收集回来了,再对列表求个sum或者max就可以了吗?这样不是累死组长吗?为什么不充分使用每个工人呢?规约实际上是使用规约树来实现的。例如求max,完成可以让工人两两pk后,再返回两两pk的最大值,然后再对第二层的最大值两两pk,直到返回一个最终的max给组长。组长就非常聪明的将工作分配下工人高效的完成了。这是O(n)的复杂度,下降到O(log n)(底数为2)的复杂度。

  import mpi4py.MPI as MPI

  comm = MPI.COMM_WORLD

  comm_rank = comm.Get_rank ()

  comm_size = comm.Get_size ()

  if comm_rank == 0:

  data = range(comm_size)

  print data

  else:

  data = None

  local_data = comm.scatter (data, root=0)

  local_data = local_data * 2

  print 'rank %d, got and do:' % comm _rank

  print local _data

  all_sum = comm.reduce (local_data, root = 0 ,op = MPI.SUM )

  if comm_rank == 0:

  print 'sumis:%d' % all _ sum

  结果如下:

  [0, 1, 2, 3, 4]

  rank 0, got and do:

  0

  rank 1, got and do:

  2

  rank 2, got and do:

  4

  rank 3, got and do:

  6

  rank 4, got and do:

  8

  sum is:20

  可以看到,最后可以得到一个sum值。

  以上内容为大家介绍了Python多核编程mpi4py实践,希望对大家有所帮助,如果想要了解更多Python相关知识,请关注多测师。https://www.e70w.com/xwzx/

返回列表
在线客服
联系方式

热线电话

17727591462

上班时间

周一到周五

二维码
线